

An Introduction to the Direct Access File System (DAFS) Protocol

Outline

- Enabling e-Business Data Centers
- Local File-sharing Environment
- VI and VI-like Interconnects
- Direct Access File System (DAFS) Protocol
- DAFS Implementation Examples
- The DAFS Collaborative
- Summary

e-Business Data Centers

Data Center

Data Center Requirements

- Scalability
 - Independently scalable compute and storage
- Fast Data Transfer
 - Low latency; high throughput
- Resiliency
 - Application server and file server fail-over
- Cost
 - Heterogeneous, standards-based hardware
- Ease of Management

"Local File-Sharing" Defined

- Geographically constrained
 - 1 or 2 machine rooms
- Mostly homogeneous clients
 - Can be large or small
 - 1 -100 machines

- Single administrative control
 - "Trusted environment"
- High performance applications
 - Web services; email, etc.
 - Database, GIS

Data Center

Virtual Interface Technology

Virtual Interface (VI) Architecture

- Cluster interconnect architecture defined by Intel,
 Compaq and Microsoft
- VI Developer's Forum

Standard capabilities

- Send/receive message, remote DMA read/write
- Multiple channels with send/completion queues
- Data transfer bypasses kernel

Transport Independence

- VI over TCP/IP (IETF)
- VI over Fibre channel (ANSI FC-VI draft std)
- InfiniBand (VIPL 2.0)

VI Architecture Example

^{*} VI Provider Layer specification maintained by the VI Developers Forum

Direct Access File System Protocol

- Lightweight file access protocol with implicit native data sharing
- High performance
 - Designed for low latency, low packet loss networks
- Leverages VI for transport independence
- Direct application access to transport resources
 - File data transfers directly to application buffers
 - Bypasses Operating System
- Leverages NFSv4 Semantics

File Access Methods

DAFS and **NFS**

NFS

- Maps file access semantics onto standard IP networking capabilities
- Wide area and local file sharing

DAFS

- Maps file access semantics onto VI capabilities
- Local file sharing focus

DAFS Performance vs. NFS over VI

Implementation	Client CPU msec/op
User NFS over VI/sockets prototype	90
Raw access to direct-attached storage	40
User DAFS prototype	25

- Designed to run over VI-capable interconnects
- Optimized for high performance
 - Remote DMA
 - Chaining
 - Application-tunable read-ahead, batch write, cache control
- Semantics improvements for local file sharing environment
 - Consistent high-speed locking
 - Graceful client and server fail-over and data migration
 - Fencing

DAFS Session Diagram

DAFS 'Client'

DAFS Wire Format & Protocol

DAFS Session Diagram

DAFS 'Client'

Implementation Approaches

uDAFS Client

- Application invokes uDAFS library for file access
- Benefits
 - Revolutionary performance
 - Gets the OS out of the way
 - True asynchronous file I/O on all OS platforms
 - Direct application access to DAFS Local File Sharing enhancements (e.g., fencing, locking)

Cost

 Application must be modified to take advantage of portable OS-independent APIs

fDAFS Client

DAFS implemented as an IFS/VFS

Peer to NTFS,CIFS,UFS,NFS

Benefits

- No application changes (file I/O interface)
- Performance comparable to direct-attached storage

Cost

- No opportunity to eliminate kernel transition overhead
- Asynchronous I/O capability limited by OS architecture
- No access to DAFS "Local File Sharing" enhancements (e.g., fencing, locking) that are not architecturally supported by the OS

DAFS Collaborative

- Hosted by Intel and Network Appliance
- Charter:
 - Drive DAFS specification
 - Submit to standards body Q3CY01
 - Encourage broad industry acceptance
 - Ensure open-source implementations
- Open to all
 - New participants welcome
- www.DAFScollaborative.org

DAFS Collaborative Contributors

Adaptec Agilent

ATTO technologies Bakbone Software

Banderacom

Berg Software Design

Cisco Ciprico

CMD Technology

Compaq Computer Corp

ComVault Systems

Delphi Engineering Group

Earthlink Network Inc

ECCS Emphora

Eurologic Systems

Fujitsu Ltd

Gadzoox Networks

Giganet

Hewlett Packard

IBM

Infocruiser

Intel

LSI Logic Storage Systems

NEC Corp

Network Appliance

Network Engines

Network Storage Solutions

Open Source Asia

Pirus Networks

Procom Technology

Qlogic

Rhapsody Networks

SAN Experts Facility

SANgate Systems Seagate Technology

Seek Systems

Sendmail

SINTESI

Solution-Soft

Spinnaker Networks

Toigo Productions

Troika Networks

Update Systems

VALinux

Veltrek

VERITAS Software

Viathan

Vieo Inc

Voltaire

Zerowait Corp

DAFS Protocol Benefits

- High-performance file access protocol with implicit native data sharing
- Optimized for high throughput and low latency
- Leverages VI for transport independence
- Direct application access
 - File data transfers directly to application buffers
 - Bypasses Operating System
- Consistent high speed locking
- Graceful recovery/failover of clients and servers
- Fencing
- > Enabling Technology for the Data Center of the Future